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Abstract

In this paper we estimate and forecast with a small-scale DSGE model of the Euro area and the United

States characterized by diverging interest-rate rules using quarterly data from 1996Q2 to 2011Q2. These

diverging rules reflect the differing mandates of the ECB and the Fed, respectively. Due to its primary ob-

jective of price stability, the ECB is supposed to conduct monetary policy by considering producer-price

inflation only, whereas the Fed is assumed to conduct its policy by taking into account the output gap in

addition to producer-price inflation (dual mandate). In terms of the RMSE and the MAE, the DSGE model

with diverging interest-rate rules outperforms a DSGE model with identical interest-rate rules in almost 70%

of all cases for almost all variables across forecast horizons out of sample. It also compares well with BVAR

benchmarks. For shorter horizons we find some statisticallysignificant differences in forecasting accuracy

between rival models. For forecast horizons three and four,the null hypothesis of equal forecasting accuracy

can seldom be rejected.
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1 Introduction

The European Central Bank (ECB), as responsible body for conducting monetary policy in the Euro area on the

one hand, and the Federal Reserve System (Fed), as its counterpart in the U.S. on the other, are characterized

by differing legal mandates. Article 127 of the Treaty on the Functioning of the European Union reads (EU ,

2010a):

“The primary objective of the European System of Central Banks (hereinafter referred to as ‘the

ESCB’) shall be to maintain price stability. Without prejudice to the objective of price stability,

the ESCB shall support the general economic policies in the Union with a view to contributing to

the achievement of the objectives of the Union as laid down inArticle 3 of the Treaty on European

Union. The ESCB shall act in accordance with the principle ofan open market economy with free

competition, favouring an efficient allocation of resources, and in compliance with the principles

set out in Article 119.”

In consequence, all other policy objectives of the EU, such as balanced economic growth, a highly competitive

social market economy, or full employment and social progress (see EU , 2010b) besides price stability, only

play a secondary role in monetary policy.

Concerning the Fed, policy objectives other than price stability, which basically amount to the adaption to the

real economy, play a key role as can be seen from Section 2A of the Federal Reserve Act (US , 2000):

“The Board of Governors of the Federal Reserve System and theFederal Open Market Committee

shall maintain long run growth of the monetary and credit aggregates commensurate with the

economy’s long run potential to increase production, so as to promote effectively the goals of

maximum employment, stable prices, and moderate long-terminterest rates.”

This duality of policy objectives – the so-called dual mandate – may thus create a trade-off between stabilization

of inflation and the real economy on the part of the Fed, but should not do so on the part of the ECB.

The purpose of the present study is to investigate if allowing for these institutional differences within a two-

country dynamic stochastic general equilibrium (DSGE) framework results in superior forecasting performance

relative to [1] a two-country DSGE modelnot taking into account these differences as well as to [2] adequate

open-economy time-series benchmarks. Contrary to Smets and Wouters (2005) and Sahuc and Smets (2008),

who compare macroeconomic shocks and frictions in the U.S. and Euro area business cycles and investigate

differences in the interest-rate policies of the ECB and the Fed,respectively, each with the help of two separately

estimated medium-scale DSGE models, we contribute to the literature by performing the analysis within a two-

country framework.

The use of a two-country model of the Euro area and the U.S. instead of separate closed-economy models is

beneficial for two main reasons. First, Adolfson et al. (2008) find evidence for the Euro area that using an

open-economy DSGE model generally improves the forecasting accuracy for key macroeconomic variables
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relative to a closed-economy version of their model. Second, the degree of openness between the Euro area

and the U.S. as implied by the two-country DSGE framework under scrutiny corresponds to the actual degree

of economic interdependence of these two economies (see Section 2.4 for more details).

Authors of articles on two-country DSGE models addressing the issue of optimal monetary policy under discre-

tion or under commitment in its various facets (see, e.g., Claridaet al. , 2002; Pappa , 2004; Benigno and Benigno ,

2006; Engel , 2011) usually encounter a trade-off between minimizing the volatility of inflation and the volatil-

ity of the output gap on the part of both countries’ central banks since they typically assume identical mandates

for both central banks.

Our idea, however, is to express the differences in mandates and policy objectives of the two real-world central

banks under scrutiny – the ECB and the Fed – as diverging interest-rate rules in such a two-country DSGE

framework. Since the length of the time series for the Euro area and the U.S. available from a common data

source is limited, such a small-scale approach seems particularly appealing. If diverging interest-rate rules

were indeed a good approximation to the real behavior of the ECB and the Fed, a model allowing for these

differences should be characterized by improved predictive ability compared to the standard case with identical

interest-rate rules. This approach is not only well-founded on legal differences between the statutes of the ECB

and the Fed, but is also corroborated by the data.

First, we run a stochastic simulation consisting of 11,000 draws with the two-country DSGE models yet to

be introduced in Section 2 and calibrated as in Section 4 while employing the pure perturbation algorithm by

Schmitt-Grohé and Uribe (2004). Discarding the first 1,000draws as burn-in draws to minimize the impact

of the starting values, we obtain simulated statistical moments implying that the DSGE model with diverging

interest-rate rules delivers a lower volatility (standarddeviation) of Euro area producer-price inflation (76.1% of

the corresponding volatility of U.S. producer-price inflation) and Euro area consumer-price inflation (95.3%)

relative to the U.S. at the expense of a higher volatility of the output gap (142.9%). Not surprisingly, the

assumption of identical interest-rate rules for both central banks in turn delivers very similar simulated statistical

moments.

Second, actual quarterly OECD and Eurostat data for the Euroarea of 17 and the U.S. from 1996Q2 to 2011Q2

(see Figure 1 in Section 3) corroborate the findings of the simulated model with diverging interest-rate rules: a

lower volatility of Euro area producer-price (60.2%) and consumer-price inflation (68.9%) relative to U.S. val-

ues, but almost the same volatility of the output gap (99.4%). Moreover, a lower volatility of consumer-price in-

flation and output growth in the Euro area relative to the U.S.has also been confirmed by Benati and Goodhart

(2011, Figure 17) for annual data from 1999 to 2008.

In addition to other macroeconometric models, central banks in particular are typically interested in using their

customized closed- and open-economy DSGE models for empirical policy analysis, forecasting, or both. While

some authors, e.g. Smets and Wouters (2004) and Adolfsonet al. (2007) for the Euro area, Smets and Wouters

(2007) and Edgeet al. (2010) for the U.S., find that their DSGE models are able to forecast well in comparison

to (Bayesian) vector-autoregressive ((B)VAR) benchmarks, others obtain mixed results:

Rubaszek and Skrzypczyński (2008) find that both DSGE models and (B)VAR benchmarks are character-

ized by inferior forecasting accuracy compared to the Philadelphia Fed Survey of Professional Forecasters.
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Leeset al. (2011), who employ the DSGE-VAR approach favored by Del Negro and Schorfheide (2004) and

Del Negroet al. (2007) on data from New Zealand, find that a DSGE-VAR model is often outperformed

by its BVAR competitor. Gupta and Kabundi (2010) find for the South African economy that large-scale

BVAR models outperform DSGE, small-scale BVAR and dynamic factor models in most occasions. However,

Gupta and Kabundi (2011) also find that both DSGE and (B)VAR models are typically outperformed bylarge

factor models. Finally, Wang (2009) shows for U.S. data that, in the short run, a factor model outperforms a

competing DSGE model while, in the long run, the theory-based DSGE model gains ground over the purely

data-driven competitor.

Using GMM estimation techniques, Belke and Klose (2010) findevidence for significant differences in the

signs of the parameters of extended Taylor (1993)-type interest-rate rules of the Fed before and after the begin-

ning of the subprime crisis, but do not for the ECB. Where signreversal of the Fed’s reaction coefficient occurs

(impact of consumer-price inflation and credit growth on theshort-run nominal interest rate turns negative,

impact of asset-price inflation turns positive), the ECB’s reaction coefficients maintain their original signs in

combination with an even higher overall significance.

Moreover, Sahuc and Smets (2008) find differences in the degree of central bank activism of the ECB and the

Fed measured by the number of changes to their main refinancing rates (the Fed revised its short-run nominal

interest rate more than twice as often as the ECB between 1999and 2004) for two separately estimated DSGE

models. These differences can largely be explained by differences in the size and type of structural shocks,

however.

In general,Čiháket al. (2009) find that, during the first stage of the financial crisis, the ECB’s monetary policy

transmission mechanism continued to work, albeit with decreased efficiency. For the ECB to remain credible

in the future in terms of fulfilling its mandate, of course, itwill have to repeal any non-standard measures

adopted during the crisis to ensure the smooth functioning of the monetary policy transmission mechanism, at

the latest when consumer-price inflation persistently reaches levels above its goal of below but close to 2% over

the medium term.

Consequently, we employ a small-scale two-country DSGE model of the Euro area and the U.S. that is charac-

terized by diverging interest-rate rules. This small-scale two-country DSGE model is based on earlier research

by Corsetti and Pesenti (2001), Obstfeld and Rogoff (2001), and Gunter (2009). The model’s diverging rules

reflect the differing mandates of the ECB and the Fed, respectively. Due to its primary objective of price

stability, the ECB is charged with conducting monetary policy by considering producer-price inflation only,

whereas the Fed is assumed to conduct its policy by taking into account the output gap in addition to producer-

price inflation (dual mandate). Using quarterly OECD and Eurostat data from 1996Q2 to 2011Q2, we estimate

the model with a standard calibration and Bayesian techniques and find posterior distributions of the model’s

structural parameters that are in line with the literature.

We evaluate the out-of-sample forecasting performance of this model for prediction horizons one to four in

comparison to the same two-country DSGE model but with identical interest-rate rules as well as two BVAR

benchmarks of lag order one and two. The BVAR benchmarks are chosen as competitors since they employ

similar estimation techniques and are ex ante characterized by superior predictive ability in terms of log data

density. The DSGE model with identical interest-rate rules, in turn, constitutes a natural competitor to the
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DSGE model with diverging interest-rate rules. This will allow for ceteris paribuscomparisons across model

specifications to assess the empirical relevance of this specific friction – non-zero sensitivities on the output

gap on the part of both central banks – to fit the data in terms offorecasting performance. A better forecasting

performance of the less restricted DSGE model with diverging interest-rate rules relative to the DSGE model

with identical interest-rate rules would corroborate our idea of the importance of allowing for the differences in

the mandates of the ECB and the Fed.

Our main findings are as follows. In terms of the root mean squared error (RMSE) and the mean absolute

error (MAE), the DSGE model with diverging interest-rate rules outperforms the DSGE model with identical

interest-rate rules in almost 70% of all cases for almost allvariables across forecast horizons (most prominent

for one-quarter-ahead predictions), thereby corroborating the idea of employing diverging interest-rate rules.

It also compares well with the BVAR benchmarks, especially for U.S. producer- and consumer-price inflation,

and the terms of trade, as for the latter it attains the overall smallest RMSE and MAE for (almost) all horizons.

The good performance of the DSGE models relative to the BVAR benchmarks is partly due to the quarterly

re-estimation of the models, which makes their free parameters quasi time-variant (see Giraitis et al. , 2014, for

an overview) and, hence, the model structure itself overallmore flexible towards capturing turning points in

the business cycle, e.g. the onset of the financial crisis. However, for forecast horizons one and two we mostly

find significantly better forecasting accuracy in terms of Harvey-Leybourne-Newbold statistics for the benefit

of Bayesian benchmarks only. For forecast horizons three and four, the null hypothesis of equal forecasting

accuracy can seldom be rejected across models.

The remainder of the article is structured as follows. Section 2 outlines the small-scale two-country DSGE

model with diverging interest-rate rules, Section 3 describes the quarterly OECD and Eurostat data for the Euro

area and the U.S., Section 4 presents the estimation approach and discusses the estimation results, and Section 5

introduces the benchmark models in comparison to which we assess the forecasting performance of the DSGE

model under scrutiny. Finally, Section 6 concludes.

2 The model

The subsequent small-scale two-country DSGE model is basedon earlier work by Corsetti and Pesenti (2001)

and Obstfeld and Rogoff (2001) and corresponds to the one developed in Gunter (2009), which can be con-

sulted for various derivations.1

1Corsetti and Pesenti (2001) explore the international transmission mechanism and the welfare properties of different types of
money-supply and government-spending shocks, whereas Obstfeld and Rogoff (2001) mostly concentrate on the issue of risk premia
on nominal exchange rates finding that the exchange risk premium can be explicitly calculated as a function of underlyingmoney-
supply shocks. Gunter (2009) explores the reaction of the models’ endogenous variables on simulated exogenous structural shocks
in terms of impulse responses while extending the work of Corsetti and Pesenti (2001) and Obstfeld and Rogoff (2001) by assuming
nominal rigidities in terms of Calvo (1983) pricing. Corsetti and Pesenti (2001) and Obstfeld and Rogoff (2001), in turn, assume
one-period-in-advance nominal wage and price contracts, respectively.
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2.1 Preferences, consumption and price indices

Let us assume that world population is constant over time andconsists of a continuum of unit mass of infinitely

lived atomistic households characterized by identical preferences. Let us assume further perfect information

and rational expectations on the part of all agents. There are two countries, where domestic – henceforth: Euro

area – households live on the segment [0, n] of the unit interval while foreign – henceforth: U.S. – households

live on the remaining segment (n, 1].

The discounted stream of expected period utilities of the representative Euro area household reads as follows:2

Ut = Et















∞
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The above utility function is a constant elasticity of substitution (CES) composite separable in its arguments

real consumptionC, real money balancesM/P (whereP denotes the domestic consumer price index (CPI),

so-called money-in-the-utility-function model), and leisure−L such that the partial derivatives of the utility

function with respect to one variable are independent of allother variables.β denotes an intertemporal discount

factor (0< β < 1). Moreover, the following holds for the various parameters: χ, γ, ξ > 0 and 0< ρ, ε < 1.

ρ is the coefficient of relative risk aversion in consumption or the inverse of the intertemporal elasticity of

substitution of real consumption,ξ denotes the inverse of the elasticity of labor supply.

The utility function of the representative foreign household is the same as Eq. (1), except thatC∗ may differ

from C, as well asM∗ from M, P∗ from P, χ∗ from χ, γ∗ from γ, andL∗ from L. Consequently, real and nominal

U.S. variables are denoted by a superscript asterisk. In addition, nominal U.S. variables are denominated

in U.S. dollars. This holds except for internationally traded bonds, where U.S. bond holdings indexed by a

superscript asterisk are denominated in euros. Since (most) U.S. equations are completely analogous to Euro

area equations, we restrict ourselves on the presentation of the latter.

The total Euro area consumption indexC from Eq. (1) is defined as a population-weighted per-capita Cobb-

Douglas composite of Euro area and U.S. commodity bundles, which implicitly makes the simplifying assump-

tion that all consumption goods are tradable and that there are no trading costs:

Ct :=
Cn

t,HC1−n
t,F

nn(1− n)1−n
. (2)

The commodity bundlesCH andCF are CES composites of differentiated final goods produced in the Euro area

(CH) or in the U.S. (CF) as in Dixit and Stiglitz (1977), thereby expressing households’ love of variety:

Ct,H :=
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θ dz

















θ
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. (4)

The optimal consumption-based Euro area CPI associated with Eq. (5) is a population-weighted Cobb-Douglas

2A possible superscripti to distinguish individual variables is suppressed throughput the analysis for the sake of better legibility.
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composite of Euro area and U.S. producer price indices (PPI):

Pt = Pn
t,HP1−n

t,F , (5)

where these sub-indices are again optimal consumption-based CES composites of Euro area and U.S. final

goods prices:

Pt,H =

[

1
n

∫ n

0
Pt(z)

1−θdz

]
1

1−θ

, (6)

Pt,F =

[

1
1− n

∫ 1

n
Pt(z)

1−θdz

]

1
1−θ

. (7)

For the sake of simplicity, we assume that the law of one priceholds for consumers across all individual goods

at all times:

Pt(z) = EXRtP
∗
t (z) ∀z ∈ [0, 1], (8)

whereEXRdenotes the endogenously determined nominal exchange ratein price quotation (Euros per U.S.

dollar).

Thus, as Euro area and U.S. households are characterized by identical preferences, the law of one price implies

that absolute purchasing power parity always holds for the CPI (5):

Pt = EXRtP
∗
t . (9)

The demand functions of the representative Euro area household for individual Euro areaC(h) and U.S. goods

C( f ) read as follows:

Ct(h) =
1
n

[

Pt(h)
Pt,H

]−θ

Ct,H, (10)

Ct( f ) =
1

1− n

[

Pt( f )
Pt,F

]−θ

Ct,F , (11)

wherez = h ∈ [0, n] denotes a typical differentiated goodz produced in the Euro area andz′ = f ∈ (n, 1]

another typical differentiated goodz′ produced in the U.S.

Eq. (5) implies that the demand curves for the composite Euroarea and U.S. goods,CH andCF, are given by:

Ct,H = n

(

Pt,H

Pt

)−1

Ct, (12)

Ct,F = (1− n)

(

Pt,F

Pt

)−1

Ct. (13)

Now we make use of the fact that world consumptionCw equals the population-weighted sum of total Euro area

and total U.S. consumption, whereCw then denotes per capita as well as total world consumption since world

population is normalized to 1:

Cw
t := nCt + (1− n)C∗t . (14)
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Combining Eq. (14) with Eqs. (8), (10), (11), (12), and (13) we finally obtain theglobal demand functions for

individual Euro area and U.S. goods in terms of (total) worldconsumption:

Cw
t (h) =

[

Pt(h)
Pt,H

]−θ (Pt,H

Pt

)−1

Cw
t , (15)

Cw
t ( f ) =

[

Pt( f )
Pt,F

]−θ (Pt,F

Pt

)−1

Cw
t . (16)

2.2 Households

The representative Euro area household maximizes her objective function (1) subject to the following sequence

of intertemporal budget constraints (in nominal terms) with respect to her decision variablesCt,Mt, Bt, andLt:

WtLt + (1+ it−1)Bt−1 + Mt−1 + Γt(h) ≥ PtCt + Mt + Bt + Ptτt. (17)

W denotes the endogenously determined nominal wage being theremuneration for supplying labor, which is

identical across households (L = L(h)), on the assumed-to-be perfectly competitive labor market. it−1 denotes

the (short-run) nominal interest rate between periodt − 1 and periodt on risk-free one-period non-government

bondsBt−1 carried over from periodt − 1. These nominal bonds are denominated in euros and are supposed to

be internationally tradable.

Money holdingsMt−1 can also be transferred fromt − 1 to t, but yield no nominal return. Consumption goods,

however, are perishable and cannot be stored.Γt(h) are instantaneous profits of the representative household

acting as a producer of an individual, differentiated Euro area goodh, which will be explained in more detail

below. Finally, letτ denote non-distortionary real lump-sum taxes.3

Again, for the representative U.S. household the intertemporal budget constraint is very similar to Eq. (17).

Since internationally traded bonds are supposed to be denominated in euros, U.S. bond holdings in denomi-

nated in eurosB∗, however, first have to be divided by the nominal exchange rate before they enter the U.S.

intertemporal budget constraint:B∗/EXR. Moreover,W∗ may differ fromW, i∗ from i, Γ∗( f ) from Γ(h), as well

asτ∗ from τ. Hence, the sequence of U.S. intertemporal budget constraints (in nominal terms) reads as follows:

W∗t L∗t + (1+ i∗t−1)
B∗t−1

EXRt−1
+ M∗t−1 + Γ

∗
t ( f ) ≥ P∗t C

∗
t + M∗t +

B∗t
EXRt

+ P∗t τ
∗
t . (18)

Similar to Corsetti and Pesenti (2001), this equation implies that the realized nominal return on internationally

traded bonds at the beginning of periodt in U.S. dollars is given by:

(1+ i∗t−1) =
EXRt−1

EXRt
(1+ it−1). (19)

The maximization of the utility function (1) subject to the budget constraint (17) then holding with equality is

undertaken by maximizing the corresponding Lagrangian andyields the subsequent first order conditions for a

3The government is assumed to set its expenditures equal to its revenues at all times such that its budget is always in balance and no
seignorage can occur (see Obstfeld and Rogoff , 2001):Mt − Mt−1 + Ptτt = 0.
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utility maximum:
C−ρt

Pt
= β(1+ it)Et















C−ρt+1

Pt+1















. (20)

This is the intertemporal Euler equation for real consumption stating that the marginal rate of substitution

between real consumption int and int + 1 equals their discounted relative prices.

Moreover, we obtain that in a utility maximum the marginal rate of substitution between real money balances

and real consumption equals the opportunity costs of holding money:

χ

(

Mt
Pt

)−ε

C−ρt

=
it

1+ it
. (21)

Finally, we also get the subsequent labor supply equation:

γ
Lξt

C−ρt

=
Wt

Pt
, (22)

which states that the marginal rate of substitution betweenlabor and real consumption equals their relative

prices, the real consumer wage.

2.3 Firms

Let us assume that agents in the Euro area and in the U.S. do notonly act as utility maximizing households,

but also as monopolistically competitive producers of finalgoods, which are producible without the input of

intermediate goods. In contrast to their role as householdswhose preferences are assumed to be identical, all

commodities are differentiated in order to satisfy the households’ love of variety.

Individual Euro area output is produced according to the following linear production function:

Yt(h) = AtLt(h). (23)

Eq. (23) is a production function in labor only. For the sake of simplicity, physical capital is omitted as

additional input factor throughout the analysis. This stepcan be justified by the short- to medium-run perspec-

tive of the model.A is a random variable denoting an exogenous aggregate productivity shock, which can be

interpreted as a transitory process innovation.

Households need not be self-employed, but it is assumed thatEuro area firms can employ Euro area workers

only as well as U.S. firms shall be allowed to employ U.S. workers only.

Producers’ instantaneous profitsΓt(h) are given by:

Γt(h) = Pt(h)Yt(h) −WtLt(h). (24)
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Relative to the producer’s own price, Eq. (24) rearranges to:

Γt(h)
Pt(h)

= Yt(h) −
Wt

Pt(h)
Lt(h) = Yt(h) −

Wt

Pt(h)
Yt(h)

At
= Yt(h) − κtYt(h), (25)

where we have made use of the production function (23). In Eq.(25) κ := W/[P(h)A] is defined as individual

real marginal production cost.

For now, let us assume that all goods prices are flexible. Theneach Euro area producer charges the same price

denoted by the Euro area PPI (PH = P(h)). Thus, instantaneous profits rearrange to:

Γt(h) = Pt,HYt(h) −WtLt(h). (26)

Maximizing Eq. (26) with respect toY(h) and using the fact that in case of goods market clearing the output

of a single producer equals global demand for the differentiated good (Y(h) = Cw(h)), we get the standard

first-order condition for a profit maximum in a model of monopolistic competition:

Wt

Pt,HAt
=
θ − 1
θ

:= κ f lex
t , (27)

which states that in a profit maximum associated with flexibleprices, the corresponding real marginal produc-

tion cost, which is defined asκ f lex, times the aggregate productivity shockA equals the real producer wage

W/PH.

2.4 Market clearing under flexible prices

Let us begin with the equilibrium conditions on the world markets for Euro area and U.S. goods denominated

in euros:

Pt,HYt = PtC
w
t , (28)

Pt,FY∗t = PtC
w
t , (29)

where the left-hand side of Eq. (28) denotes global supply ofand the right-hand side global demand for Euro

area goods.4

Eqs. (28) and (29) immediately collapse to the definition of the terms of trade:

St :=
Pt,F

Pt,H
=

EXRtP∗t,F
Pt,H

=
Yt

Y∗t
, (30)

which is the ratio of imported goods’ over exported goods’ prices from the perspective of the Euro area or the

ratio of Euro area output over U.S. output. Thus, a realization of S > 1 is advantageous for Euro area output,

whereas a realization ofS < 1 would be advantageous for U.S. output.

Using the domestic intertemporal budget constraint (17) plus further manipulations eventually yield the Euro

4For reasons of brevity, we do not present the derivation of the equilibrium conditions on the money markets here (see Gunter ,
2009, for more details).

10



area and U.S. balance of payment identities:

Pt,HYt − PtCt + it−1Bt−1 ≡ Bt − Bt−1, (31)

Pt,FY∗t − PtC
∗
t + it−1B∗t−1 ≡ B∗t − B∗t−1 (32)

with the left-hand side of Eq. (31) representing the Euro area’s current account and the right-hand side its

capital account.

Internationally tradable bonds are supposed to be in zero net world supply:

nBt + (1− n)B∗t = 0. (33)

Assuming that international bond holdings have initially been zeroB0 = B∗0 = 0 together with Eqs. (14),

(31), (32), and (33) implies thatBt = B∗t = 0 at all times according to Corsetti and Pesenti (2001) and

Obstfeld and Rogoff (2001). Then Eqs. (31) and (32) simplify to the following:

Ct =
Pt,HYt

Pt
, (34)

C∗t =
Pt,FY∗t

Pt
. (35)

Using the definition of the terms of trade (30) the preceding equations can be rewritten as:

Ct = Sn−1
t Yt, (36)

C∗t = Sn
t Y∗t . (37)

These are the conditions for Euro area and U.S. goods market clearing, which imply that households across

countries always consume exactly their real incomes (see Obstfeld and Rogoff , 2001).

Moreover,B0 = B∗0 = 0 together with Eqs. (14), (31), (32), and (33) also implies thatCt = C∗t = Cw
t at all times

such that

Ct = C∗t = Cw
t = nCt + (1− n)C∗t = nSn−1

t Yt + (1− n)Sn
t Y∗t = Yn

t (Y∗t )1−n, (38)

while making use of Eqs. (36) and (37).

In other words, Cobb-Douglas preferences for the Euro area and U.S. commodity bundles as in Eq. (2) together

with producer-currency pricing and the absence of preference shocks imply under the assumption of completely

flexible prices that any shock that reduces the supply of output of a country will increase its price in equal

proportion. Thus, the value of its real income remains unchanged and the allocation under complete markets

can be achieved without trade in bonds.

As a consequence, consumption shares across countries are not only time-constant but even equal as stated in

Obstfeld and Rogoff (2001). Since current and capital accounts between the two countries are in balance at all

times and in all possible states of the world, the mechanism of adjustment to shocks in the world economy will

only be represented by evolution of the terms of trade, but not by changes in the countries’ net asset positions.

These properties are consistent with the actual evolution of Euro area and U.S. current account data: the current
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account earnings from as well as the current account expenditures to the respective other country in per cent of

nominal Euro area and U.S. GDP have only reached values between 2% and 5% according to quarterly Eurostat

data between 2003Q1 and 2011Q2. Thus, trade in goods and services between the two countries takes place to

a non-negligible extent.

This fact notwithstanding, the current accountbalancebetween the two countries in per cent of nominal Euro

area and U.S. GDP has been hovering around 0% throughout the sample and reached a time average of only

0.4% (0.3%) of nominal Euro area (U.S.) GDP. This finding corroborates the validity of the present model’s

properties of time-constant net asset positions.

By combining Eqs. (22), (27), and (36) with the CPI (5) we obtain two equations inW/P = (W/PH)Sn−1 which

can be solved forL:

Lt = S
(n−1)(1−ρ)

ξ

t

(

At

γ

)
1
ξ
(

θ − 1
θ

)
1
ξ

Y
−
ρ

ξ

t . (39)

Eq. (39) states that in an equilibrium on the perfectly competitive labor market, Euro area employment posi-

tively depends on the aggregate productivity shockA and flexible-price real marginal production cost (θ− 1)/θ,

but negatively on the terms of tradeS and Euro area outputY.

Combining Eq. (39) with the production function (23) and solving for Y, we finally obtain the Euro area

flexible-price equilibrium outputY f lex:

Y f lex
t = S

(n−1)(1−ρ)
ξ+ρ

t A
ξ+1
ξ+ρ

t

(

θ

θ − 1

)− 1
ξ+ρ

γ
− 1
ξ+ρ . (40)

According to Eq. (40), Euro area flexible-price equilibriumoutput positively depends on the aggregate produc-

tivity shockA, yet negatively on the terms of tradeS and the flexible-price mark-up factorθ/(θ − 1).

2.5 Log-linear approximation and nominal rigidities

Since the DSGE model above cannot be solved in closed form, wehave to log-linearize it around its non-

stochastic zero-inflation steady state. Moreover, for money not to be neutral in the short run and monetary

policy to be effective after all (see Claridaet al. , 1999), we need some form of nominal rigidities in addition

to the assumption of monopolistic competition as in Dixit and Stiglitz (1977).

It is straightforward to derive the dynamic IS curves for both countries by log-linearizing the Euro area in-

tertemporal Euler equation for real consumption (20) in combination with the Euro area goods markets clearing

condition (36) as well as their U.S. analogues around the non-stochastic zero-inflation steady state.

Accordingly, we obtain:

ŷt = Et[ŷt+1] +
1
ρ
{Et[πt+1] − ît} − (1− n)Et[∆st+1], (41)

ŷ∗t = Et[ŷ
∗
t+1] +

1
ρ
{Et[π

∗
t+1] − î∗t } + nEt[∆st+1]. (42)

Except for all types of interest rates, lower-case Latin letters denote natural logarithms of the corresponding
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variables and that all lower-case variables are given in percentage deviations from the non-stochastic zero-

inflation steady state, which is denoted by hats. The zero-inflation steady-state values themselves are denoted

by upper bars. Furthermore,ī = ī∗ = (1− β)/β holds for the zero-inflation steady-state nominal interestrates,

both in the Euro area and in the U.S.

These two dynamic IS curves representaggregate demandin both countries, where Eq. (41) can be interpreted

as follows: current Euro area demand is higher than its zero-inflation steady-state value if the expected Euro

area output deviationEt[ŷt+1] is positive (interpretable as an expected peak in the business cycle). There is

also a clear positive relation of current demand to expectedCPI inflationEt[πt+1] := Et[pt+1] − pt (households

consume more today if prices are expected to increase in the future) and a negative relation to current deviations

from the zero-inflation steady-state nominal interest rateît (investing in nominal bonds is relatively attractive

compared to buying consumption goods).

Moreover, there are also spill-over effects from the U.S., which affect current Euro area demand through the

expected evolution of the terms of tradeEt[∆st+1]: current Euro area demand negatively depends on an expected

increase in the latter since terms of trade expected to augment mean that imported goods from the U.S. become

more expensive relative to Euro area goods. (1− n) denotes the degree of openness of the Euro area to the U.S.

Since the Euro area degree of openness coincides with the size of the U.S. due the definition of the CPI (5) as

a population-weighted Cobb-Douglas composite, there is nohome bias in consumption.

The New Keynesian Philips curves (NKPCs) for both countriescan be derived by log-linearizing the price-

setting equations of Euro area firms as well as their U.S. analogue around the non-stochastic zero-inflation

steady-state.

We introduce nominal rigidities in terms of sticky prices byassuming Calvo (1983) contracts on the part of

firms. Calvo (1983) contracts imply that each producer is only allowed to reset her price with probability (1−δ)

in any given period, independent of the time since the last adjustment. Therefore, a measure of (1− δ) of firms

reset theirs prices each period, while a measure ofδ of firms keep their prices constant and simply adjust their

individual output in order to meet demand. 1/(1− δ) then captures the average duration of a price:

πt,H = βEt[πt+1,H] +
(1− δ)(1− δβ)

δ
κ̂t, (43)

π∗t,F = βEt[π
∗
t+1,F ] +

(1− δ∗)(1− δ∗β)
δ∗

κ̂∗t . (44)

In Eq. (43),πt,H := pt,H − pt−1,H is defined as current Euro area PPI inflation, which typicallydiffers from CPI

inflation in an open economy. The NKPC (43) states that current Euro area PPI inflationπt,H is an increasing

function of both expected Euro area PPI inflationEt[πt+1,H] and the deviation of current Euro area real marginal

production cost from its zero-inflation steady-state valueκ̂t := κt − κ
f lex
t .

Furthermore, let us assume thatsetting a new price at homeandsetting a new price abroadare stochastically

independent events. As Euro area and U.S. firms both set theirs prices in the currency of the countries where

they are located, the present model features producer currency pricing as in Claridaet al. (2002).

Nonetheless, we want to express Eqs. (41), (42), (43), and (44) in terms of the output gap, which shall be defined

as the difference between actual and flexible-price output deviations: xt := ŷt − ŷf lex
t andx∗t := ŷ∗t − (ŷ∗t )

f lex. In

13



order to rewrite Eqs. (43) and (44) in terms ofx andx∗, respectively, we have to take a closer look at the ratio

of the sticky-price real marginal production costκt and its flexible-price counterpartκ f lex
t as given by Eqs. (25)

and (27):
κt

κ
f lex
t

=
θWtS1−n

t

(θ − 1)PtAt
. (45)

Combining Eq. (45) with the labor supply curve (22), the production function (23), and the condition for Euro

area goods market clearing (36), we obtain after some manipulation:

κt

κ
f lex
t

=















Yt

Y f lex
t















ξ+ρ

, (46)

whereY f lex
t denotes the domestic flexible-price equilibrium output as given by equation (40). Log-linearizing

this expression around the non-stochastic zero-inflation steady-state yields:

κ̂t = (ξ + ρ)(ŷt − ŷf lex
t ) = (ξ + ρ)xt. (47)

Hence, by using Eq. (47), Eqs. (41), (42), (43), and (44) rearrange to:

xt = Et[xt+1] +
1
ρ
{Et[πt+1] − ît} − (1− n)Et[∆st+1] + Et[ŷ

f lex
t+1 ] − ŷf lex

t , (48)

x∗t = Et[x
∗
t+1] +

1
ρ
{Et[π

∗
t+1] − î∗t } + nEt[∆st+1] + Et[(ŷ

∗
t+1) f lex] − (ŷ∗t )

f lex, (49)

πt,H = βEt[πt+1,H ] +
(1− δ)(1− δβ)(ξ + ρ)

δ
xt + ut, (50)

π∗t,F = βEt[π
∗
t+1,F ] +

(1− δ∗)(1− δ∗β)(ξ + ρ)
δ∗

x∗t + u∗t . (51)

ut denotes an exogenously given, stationary AR(1) process of the formut = ζuut−1 + ηu,t (0 < ζu < 1) with the

exogenous error termηu assumed to be i.i.d.∼ N(0, σ2
ηu

). This AR(1) process can be interpreted as a transitory

cost-push shock reflecting determinants of real marginal production cost which do not move proportionally

with the output gap (see Claridaet al. , 2001).

The two NKPCs representaggregate supplyin both countries and are isomorphic to their closed-economy

counterparts, where Eq. (50) can be interpreted as follows:the positive short-runtrade-off between current

Euro area PPI inflationπt,H and the current Euro area output gapxt can be seen. However, this is not really

a trade-off to be exploited by policymakers sinceπt,H is also positively related to (discounted) expected Euro

area PPI inflationβEt[πt+1,H].

It will turn out to be convenient that the following holds forEt[ŷ
f lex
t+1 ] − ŷf lex

t when we make use of the log-

linear version of the current Euro area flexible-price equilibrium output according to Eq. (40) and its expected

counterpart:

Et[ŷ
f lex
t+1 ] − ŷf lex

t =
(n− 1)(1− ρ)

ξ + ρ
Et[∆st+1] +

ξ + 1
ξ + ρ

Et[∆at+1], (52)

where the transitory productivity shockat is assumed to follow an exogenously given, stationary AR(1)process

of the format = ζaat−1 + ηa,t (0 < ζa < 1) with the exogenous error termηa assumed to be i.i.d.∼ N(0, σ2
ηa

).
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In consequence, the dynamic IS curves (48) and (49) rearrange to:

xt = Et[xt+1] +
1
ρ
{Et[πt+1] − ît} +

(n− 1)(ξ + 1)
ξ + ρ

Et[∆st+1] +
ξ + 1
ξ + ρ

Et[∆at+1], (53)

x∗t = Et[x
∗
t+1] +

1
ρ
{Et[π

∗
t+1] − î∗t } +

n(ξ + 1)
ξ + ρ

Et[∆st+1] +
ξ + 1
ξ + ρ

Et[∆a∗t+1]. (54)

Since CPI and PPI inflation typically differ in open economy models (see, e.g., Claridaet al. , 2001), we need

two equations linking these two types of inflation rates. In doing so, we use the log-linear version of the Euro

area CPI definition (5) and its U.S. analogue:

πt = πt,H − (n− 1)∆st + et, (55)

π∗t = π∗t,F − n∆st + e∗t , (56)

whereet is assumed to follow an exogenously given, stationary AR(1)process of the formet = ζeet−1 + ηe,t

(0 < ζe < 1) with the exogenous error termηe assumed to be i.i.d.∼ N(0, σ2
ηe

). Since in reality Euro area

and U.S. CPIs do not only consist of Euro area and U.S. goods prices, the error termet can be interpreted as a

wedge between the present definition (55) and the realized CPIs.

2.6 Diverging interest-rate rules

As mentioned in Section 1, we model the differences in monetary policy mandates and objectives of the ECB

and the Fed in terms of diverging Taylor (1993)-type interest-rate rules with feedback of (some of) the endoge-

nous variables. The feedback is introduced to circumvent price level (and inflation) indeterminacy as shown

by Sargent and Wallace (1975), which would be associated with purely exogenous interest-rate targets (see

Woodford , 2003, pp. 101–106, for Neo-Wicksellian cashlessand money-in-the-utility-function models such

as the one used in the present article as given with Eq. (1)).

Consequently, the interest-rate rules differ to the extent that the Fed is supposed to conduct its monetary policy

by considering current U.S. PPI inflationπ∗t,F and the current US output gapx∗t (dual mandate), while the ECB

imposes its monetary policy by taking into account current EU PPI inflationπt,H only (primary objective). This

difference is due to the fact that all conceivable policy goals ofthe ECB besides price stability can be interpreted

as secondary:

ît = απt,H + ωît−1 + vt, (57)

î∗t = α∗π∗t,F + ι
∗x∗t + ω

∗ î∗t−1 + v∗t . (58)

The ECB’s interest rate rule (57) can be described as follows: α (α > 0) denotes the sensitivity of the ECB to

current Euro area PPI inflationπt,H.5 In addition, the rule incorporates some degree of inertia ofthe monetary

policy instrumenti itself, which is measured by the parameterω (0 < ω < 1). The parameter 1− ω, in

5A standard result of optimal non-cooperative monetary policy under discretion in a two-country DSGE framework featuring pro-
ducer currency pricing is that central banks should target current PPI inflation instead of CPI inflation (see Claridaet al. , 2002).
Moreover, Galı́ and Monacelli (2005) show within a small-open-economy DSGE framework with producer currency pricing that for
the majority of cases welfare losses in terms of units of steady-state consumption are lower for a Taylor (1993)-type interest-rate rule
sensitive to PPI inflation compared to a rule sensitive to CPIinflation or to a peg of the nominal exchange rate.
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turn, measures the degree of adjustment to the zero-inflation steady-state value of the nominal interest rate

ī = (1− β)/β, which could also be interpreted as interest-rate target. The feature of interest-rate inertia is rather

an empirical finding than an implication of the mandates of the central banks (see Woodford , 2003, pp. 95–96).

ι∗ (ι∗ > 0) in Eq. (58) denotes the sensitivity of the Fed to the current U.S. output gapx∗t , whereι = 0 is assumed

to hold for the ECB. As noted by Del Negroet al. (2007), setting one model parameter equal to zero represents

a reduction by one of the many nominal and real frictions imposed by a DSGE model on the data. This will

allow for ceteris paribuscomparisons across model specifications in Sections 1 and 5 in order to assess the

empirical relevance of a frictionι , 0 to fit the data in terms of forecasting performance. Since the signs of the

elasticities of the central banks’ policy instruments to endogenous variables are all positive so that they react

counter-cyclically to their changes, the policies can alsobe characterized as having alean-against-the-wind

property (see Claridaet al. , 1999).

The Taylor principle, which states that the monetary authority ought to react to an increase in current PPI

inflation by augmenting its policy instrumentmorethan one for one in order to allow for a determinate rational

expectations equilibrium (see Woodford , 2003, p. 40), is assumed to be fulfilled by both central banks (α, α∗ >

1) later on in Section 4.6

Moreover, in Eq. (57),vt denotes an exogenously given, stationary AR(1) process of the formvt = ζvvt−1 + ηv,t

(0 < ζv < 1) with the exogenous error termηv assumed to be i.i.d.∼ N(0, σ2
ηv

). This AR(1) process can be

interpreted as a transitory monetary policy shock, wherebya positive realization ofηv denotes a contractionary

shock.

Finally, we need an equation expressing the terms of trade asa function of the remaining endogenous variables.

Let us use the log-linear version of Eq. (19), which readsît−1 = ∆ ln EXRt + î∗t−1, in order to substitute for

∆ ln EXRt in the log-linear representation of current evolution of the terms of trade from Eq. (30):∆st =

∆ ln EXRt + π
∗
t,F − πt,H. Hence, we obtain:

∆st = ît−1 − î∗t−1 + π
∗
t,F − πt,H + dt, (59)

wheredt is assumed to follow an exogenously given, stationary AR(1)process of the formdt = ζddt−1 + ηd,t

(0 < ζd < 1) with the exogenous error termηd assumed to be i.i.d.∼ N(0, σ2
ηd

). Since in reality condition

(19) may not always hold with equality, the error termdt can be interpreted as a wedge between the present

definition (59) and the realized evolution of the terms of trade.

In summary, with Eqs. (50), (51), (53), (54), (55), (56), (57), (58), and (59) we have derived a determined

system of nine expectational difference equations in nine endogenous variables, which can now be taken to the

data. Henceforth, we will refer to the two-country DSGE model with diverging interest-rate rules asDSGE-DIV

(ι = 0). The model with identical interest-rate rules (ι , 0), in turn, will be referred to asDSGE-SAME.

6The Taylor principle in its purest form is not a necessary condition for equilibrium determinacy for an interest-rate rule of type
(58). Instead, the condition (1−δ∗)(1−δ∗β)(ξ+ρ)/δ∗(α∗−1)+(1−β)ι∗ > 0 would be a necessary and sufficient condition for equilibrium
determinacy in case of a contemporaneous interest-rate rule (see Bullard and Mitra , 2002).
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3 The data

We use revised quarterly data for the Euro area of 17 and the U.S. ranging from 1996Q2 to 2011Q2. The data

are taken from Eurostat (output gaps) and OECD (all other variables) and are vintages as retrieved on November

10, 2011. This gives us 61 observations for the full sample. For historical realizations of the variables see Figure

1.7

[Figure 1 about here.]

The sample starts in 1996Q2 because no earlier observationsare available for CPI inflation for the Euro area

of 17. We use OECD and Eurostat data since these are reliable and publicly accessible data sources and all

variables are defined in a comparable manner for the two economies of interest. Moreover, we concentrate on

the Euro area of 17 since this is the Euro area as it existed until the end of 2013.

According to Smets and Wouters (2005), the convergence process within the (future) Euro area may – at the

earliest – have started in the mid-1980s. Given the fall of the Iron Curtain no earlier than 1989/1990 and

the beginning of the transition of the centrally planned economies in Central and Eastern Europe to market

economies in its aftermath, the start of the convergence process within the (future) Euro area should safely be

assumed no sooner than the signature of the Treaty on the European Union (the so-called Maastricht Treaty)

in 1992, which includes the Maastricht convergence criteria for entering the third stage of the Economic and

Monetary Union with the view to finally adopting the euro as a common currency.

The output gaps (x, x∗) are modeled as the natural logarithm of seasonally and working-day adjusted real GDP

minus potential output. Potential output is proxied by the trend of log real GDP as obtained from the Hodrick-

Prescott filter (see Hodrick and Prescott , 1997, penalty parameterλ = 1, 600 for quarterly data) over the whole

sample (1996Q2–2011Q2) since we employ revised data for allvariables and are interested in evaluating ex-

post forecasting accuracy only. This step constitutes a deviation from the definition of the output gap as given

in Section 2 and is mainly due to practical considerations (non-availability of consistently defined data for

flexible-price-equilibrium output for the Euro area and theU.S.). However, Orphanides and van Norden (2005)

confirm that the Hodrick-Prescott filter (among other univariate and multivariate measures) is a useful output-

gap estimate as long as revised data are considered.

The output gaps of both economies turned strongly negative in the course of the financial crisis (x in 2009Q1,

x∗ in 2008Q4) and show signs of a slight recovery no earlier than2011Q1 (x) and in 2010Q2 (x∗), respectively.

Besides the run-up to the financial crisis and the crisis itself, the data also cover the build-up of the new economy

bubble in the late 1990s and its burst in the early 2000s.

PPI inflation rates (πH , π
∗
F) are modeled as the quarter-on-quarter change in per cent divided by 100 of the index

of total producer prices (domestically produced goods soldat home and abroad) in manufacturing. We restrict

ourselves to this index since the present model assumes thatfirms employ producer currency pricing and that

only final goods are produced and traded.

CPI inflation rates (π, π∗) are modeled as the quarter-on-quarter change in per cent divided by 100 of the

7Summary statistics of the variables are available on request.
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Harmonized Index of Consumer Prices (HICP) in case of the Euro area of 17 and the U.S. consumer price

index in case of the U.S., respectively. We choose to use CPI inflation instead of the GDP deflator since we

explicitly focus on prices for domestic and imported goods faced by households.

At the beginning of the financial crisis (πH: 2008Q4–2009Q2;π∗F , π, π
∗: 2008Q4–2009Q1) a short deflationary

period in producer and consumer prices can be observed, whereby the decrease of U.S. price indices is more

severe than of their Euro area equivalents. Over the whole sample, PPI inflation in both economies is more than

twice as volatile as CPI inflation and both U.S. inflation measures are generally more volatile than their Euro

area counterparts.

The short-run nominal (interbank) interest rates (î, î∗) are modeled as the 3-month Euro Interbank Offered

Rate (EURIBOR) in case of the Euro area (ECB synthetic rates calculated using national rates, LIBOR where

available, weighted by GDP prior to 1999Q1) and the rate on 3-month nationally traded certificates of deposit

(CDs) issued by commercial banks in case of the U.S., respectively, in per cent per annum divided by 400 minus

0.01 (approximate quarterly zero-inflation steady-date nominal/real interest rate forβ = 0.99). A value of 0.01

also roughly corresponds to therealizedaverage values for both economies’ short-run quarterly nominal interest

rates between 1996Q2 and 2011Q2. The below-average values of î (since 2009Q1) and̂i∗ (since 2008Q1) in

response to the lower main refinancing rates of the ECB and theFed have have remained in that range until the

end of the sample in 2011Q2.8

Finally, we calculate the terms of trade (∆s) ourselves by using the first difference of the natural logarithm

of the 3-month average of the nominal exchange rate of euros (of European Currency Units, ECUs, prior to

1999Q1) per U.S. dollar plusπ∗F minusπH: ∆st = ∆ ln EXRt + π
∗
t,F − πt,H.

The terms of trade feature the highest volatility of all macroeconomic variables not only due to the impact of

PPI inflation, but also due to the volatile nature of a floatingnominal exchange rate. The advantageousness

of the terms of trade for Euro area output (positive realization) and U.S. output (negative value) therefore also

changes frequently.

4 Estimation

4.1 Estimation approach and prior distributions

Estimation of the two-country DSGE modelDSGE-DIVis carried out by employing Bayesian techniques (see,

e.g., An and Schorfheide , 2007, for a survey on Bayesian inference in DSGE models). As laid out, e.g., in

Lütkepohl (2005, pp. 222–223), for Bayesian estimation itis assumed that non-sample information on a

generic parameter vectorψ available prior to estimation is summarized in its prior probability density func-

tion (PDF)g(ψ). The sample information onψ, however, is summarized in its sample PDF given byf (y|ψ),

which is algebraically identical to the likelihood function l(ψ|y). By reweighting the likelihood function by

8We are aware of the fact that the ECB did not operate before January 1, 1999. This means that the time series used for the Euro
area short-run nominal interest rate during the period from1996Q2 until 1998Q4 is a synthetic rate. A rejection of this approximation
would considerably reduce the already quite limited sample. Furthermore, in the case of the U.S., a short-run nominal interest rate with
a 3-month maturity had to be chosen, thereby precluding the use of the Federal Funds Rate, the maturity of which is overnight.
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an informative prior the so-calleddilemma of absurd parameter estimates(see An and Schorfheide , 2007) can

be circumvented, which would otherwise result in probably unrealistic posterior means. That is why pure

maximum likelihood estimation is not as prominent in DSGE estimation as Bayesian inference.

The distribution of the parameter vectorψ conditional on the sample information contained iny can be sum-

marized byg(ψ|y), which is known as posterior PDF. The posterior distribution, which contains all information

available for the parameter vectorψ, is proportional to the likelihood function times the priorPDF.

Since the posterior distribution cannot be determined analytically, we have to adopt some type of Monte

Carlo Markov Chain sampling algorithm to simulate the distribution of the parameter vectorψ (see, e.g.,

Christoffel et al. , 2008). In particular, we adopt the Metropolis-Hastings algorithm, whose steps are outlined,

e.g., in Koop (2003, pp. 92–94), consisting of two parallel Monte Carlo Markov Chains with 250,000 draws al-

together. Before computing the posterior mean and covariance, 20% of the draws are discarded as burn-in draws

to mitigate the impact of the starting values. All computations are performed with the DYNARE preprocessor

for MATLAB, which can be downloaded for free fromwww.dynare.org.

For the present framework, the parameters introduced in Section 2 constitute the parameter vectorψ :=

(n, β, ρ, ξ, δ, δ∗, α, α∗, ι∗, ω, ω∗, ζa, ζ
∗
a, ζu, ζ

∗
u, ζe, ζ

∗
e, ζv, ζ

∗
v , ζd, σηa, ση∗aσηu, ση∗u, σηe, ση∗e, σηv, ση∗v, σηd)

′, which in-

cludes the eleven structural parameters of which nine are estimated, as well as the autoregressive parameters

(ζ) and standard errors (ση) of the nine AR(1) disturbances.

Similar to Smets and Wouters (2005) and Sahuc and Smets (2008), who estimate separate models, we employ

the same priors for both countries. The calibration of the parameter vectorψ (prior means, standard deviations

and PDFs) is standard and largely follows Smets and Wouters (2007). It can be obtained from Table 1 together

with the estimation results (posterior distributions) ofDSGE-DIV. Deviations from the Smets and Wouters

(2007) calibration includeδ(∗) = 0.75 (prior mean only), which is taken from Smets and Wouters (2003)

and Rubaszek and Skrzypczyński (2008) implying a somewhatlonger a-priori average duration of a price

of 1/(1 − δ(∗)) = 1/(1 − 0.75) = 4 quarters. The assumed Gamma prior PDFs forα(∗) and ι∗ also deviate

from Smets and Wouters (2007) and follow Leeset al. (2011) because only positive values are plausible if

the aforementioned countercyclicallean-against-the-windpolicy stance is assumed (see Claridaet al. , 1999).

Moreover, the prior mean ofι∗ = 0.5 corresponds to the original Taylor (1993) value. We employthe same

calibration forι , 0 as forι∗ to formulateDSGE-SAME(prior mean, prior standard deviation, as well as prior

distribution), e.g. to assess this model’s forecasting performance relative toDSGE-DIV as done in Section

5. We assume little prior knowledge about the standard errors of the AR(1) disturbances and therefore assign

Inverse Gamma prior PDFs.

The country sizen = 0.5 is kept fixed throughout estimation because it is no generically economic parame-

ter and set to 0.5 because the Euro area and the U.S. are approximately equal-sized countries as measured by

both GDP and population. The intertemporal discount factorβ = 0.99 is also kept fixed because it is often

only weakly identified. A standard value of 0.99 implies an approximate quarterly zero-inflation steady-date

nominal/real interest rate of (1−β)/β = 0.01. Altogether, very similar calibrations can be found in other empir-

ical DSGE papers on the Euro area and the U.S. such as the ones already cited in Section 1: Smets and Wouters

(2003, 2005); Adolfsonet al. (2007); Christoffel et al. (2008); Rubaszek and Skrzypczyński (2008); Edgeet al.

(2010). This short list does not claim to be exhaustive.
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The chosen calibration ensures that the Blanchard and Kahn (1980) conditions (7 eigenvalues larger than 1

in modulus for 7 forward-looking variables) are satisfied such that there is a unique stationary solution to the

determined system of expectational difference equations (50), (51), (53), (54), (55), (56), (57), (58), and (59),

which render the rational expectations equilibrium determinate. Moreover, the identification toolbox for DSGE

models that is incorporated in DYNARE (see Ratto , 2011, for adescription) gives us additional confidence in

the goodness of the chosen calibration. Its Monte Carlo option, which uses information about the whole prior

distribution, suggests that all model parameters are identified not only at their prior means as indicated in Table

1, but also over a loop of 250 random parameter draws over the entire prior distribution.

4.2 Estimation results

Generally speaking, the parameter estimates are in line with DSGE parameter estimates obtained by other

authors for the Euro area and the U.S. Nonetheless, it is worthwhile to discuss the estimation results in case

there are differences to parameter estimates obtained elsewhere in the literature.

The two parameters stemming from household utility (1), theinverse of the intertemporal elasticity of sub-

stitution of real consumptionρ and the inverse of the elasticity of labor supplyξ, are the same across coun-

tries as identical preferences are assumed. Concerningρ, the posterior mean of 2.0258 is somewhat higher

than the values obtained separately for the Euro area (1.391, Smets and Wouters , 2003) and the U.S. (1.38,

Smets and Wouters , 2007). Smets and Wouters (2005) obtain median estimates of 1.13 (Euro area) and 1.95

(U.S., which is closer to our result), whereas Sahuc and Smets (2008) obtain more similar values of 1.231 for

the Euro area and 1.282 for the U.S. By contrast, Rubaszek andSkrzypczyński (2008) obtain a value forρ of

only 0.97 for the U.S.

The posterior mean ofξ of 2.9789 is also slightly higher than 2.503 (see Smets and Wouters , 2003) obtained for

the Euro area or 1.83 (see Smets and Wouters , 2007) for the U.S, implying that U.S. labor supply is more elastic

than Euro area labor supply. Nonetheless, we also obtain a lower posterior mean ofρ compared toξ indicating

that intertemporal substitution of real consumption on a quarterly basis is more elastic than labor supply, which

is plausible. Rubaszek and Skrzypczyński (2008) again obtain a similar posterior mean for U.S. data: 1.97.

Also Smets and Wouters (2005) (ξ = 2.00;ξ∗ = 2.88) and Sahuc and Smets (2008) (ξ = 2.204;ξ∗ = 2.361)

obtain posterior medians that are within the same range as ours, but with U.S. labor supply being more elastic.

At 0.4085, the posterior mean of the Euro area degree of pricestickinessδ is higher than the posterior mean of

δ∗ (0.3764), whereby both values imply an average duration of aprice below but close to two quarters. With

0.905 (see Smets and Wouters , 2003) for the Euro area and 0.66(see Smets and Wouters , 2007) for the U.S.,

also other authors obtain higher values for the Euro area than in U.S. For instance, Adolfsonet al. (2007) obtain

a value of 0.883 for domestic prices in the Euro area (posterior mode), whereas Rubaszek and Skrzypczyński

(2008) obtain a value of 0.78 for the U.S. Christoffel et al. (2008) find an even higher posterior mean of 0.921

for Euro area domestic prices, which is in the neighborhood of the posterior medians found by Smets and Wouters

(2005) and Sahuc and Smets (2008) for both the Euro area and the U.S.

The posterior mean of the ECB’s sensitivity to PPI inflationα = 1.9011 is higher thanα∗ = 1.7714 suggesting a

more hawkish stance on inflation on the part of the ECB. Other authors obtain similar values such as 1.688 (see
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Smets and Wouters , 2003), 1.710 (see Adolfsonet al. , 2007) (posterior mode), or 1.900 (see Christoffel et al. ,

2008) for the Euro area or 2.04 (see Smets and Wouters , 2007),1.73 (see Rubaszek and Skrzypczyński , 2008)

for the U.S. Also, the posterior mean of the Fed’s sensitivity to the output gapι∗, at 0.0775, is in line with the

literature. Smets and Wouters (2007) obtain, with a posterior mean of 0.08, a similarly low sensitivity of the

Fed to the output (gap), which is close to zero. For the modelDSGE-SAME, with ι , 0, we obtain an estimate

of ι = 0.0653, which is somewhat lower than the posterior mean ofι∗ = 0.0713 obtained in that case.

Interestingly, Smets and Wouters (2005) (α = 1.41;α∗ = 1.49;ι = 0.11;ι∗ = 0.09) and Sahuc and Smets

(2008) (α = 1.529;α∗ = 1.831;ι = 0.071;ι∗ = 0.064) also obtain posterior medians that are in the neighborhood

of our estimates for the central banks’ sensitivities on inflation and output (gap), but in both cases the ECB

seems to have a more dovish stance on monetary policy than theFed. The reason for this difference may be

that the samples of these studies (1983Q1–2002Q2 and 1985Q1–2004Q4, respectively) barely overlap with our

period under study.9

Interest-rate smoothing as measured byω,ω∗ is of importance for both central banks. With 0.8493 and

0.8594, respectively, the posterior means are in line with 0.956 (see Smets and Wouters , 2003), 0.867 (see

Christoffel et al. , 2008), 0.874 (see Adolfsonet al. , 2007) (posterior mode) for the ECB and 0.81 (see Smets and Wouters ,

2007), 0.76 (see Rubaszek and Skrzypczyński , 2008) for theFed. Also Smets and Wouters (2005) and Sahuc and Smets

(2008) obtain similar results.

Similar to Smets and Wouters (2007), aggregate productivity (ζa = 0.9767;ζ∗a = 0.9669) and cost-push (ζu =

0.9889;ζ∗u = 0.9845) shocks are more persistent than monetary policy shocks (ζv = 0.2831;ζ∗v = 0.2160).

However, the reason why monetary policy shocks turn out to beless persistent than other shocks is the fact that

the lagged nominal interest rate has already been included in the interest-rate rules (interest-rate smoothing).

Also the shocks representing the wedges between the model definition and the realization of the CPIs and the

evolution of the terms of trade feature only a low degree of persistence (ζe = 0.0200;ζ∗e = 0.0306;ζd = 0.0237).

[Table 1 about here.]

Since the modes of the posterior distributions and the posterior modes do not deviate much from each other, we

have used a sufficient number of draws for the Metropolis-Hastings algorithm. Similar to Smets and Wouters

(2007), the generally lower variance of the posterior distributions of the model parameters relative to the prior

distributions (see Table 1) indicates that the data is informative on the model parameters. Moreover, desirable

acceptation rates of candidate draws according to Robertset al. (1997) are met across Monte Carlo Markov

Chains (0.2802 and 0.2751, respectively).10

9One caveat concerning the interpretation of the estimationresults, which however is in line with the empirical findingsfrom the
literature, still needs to be addressed: the posterior means of both central banks’ sensitivities to the output gap obtained in this study are
very similar in size and close to zero. Therefore, from an econometric point of view, any quantitative statement in termsof one central
bank putting more emphasis on the output gap than the other has to be taken with a grain of salt.

10The convergence of parameter estimates can also be deemed fulfilled in terms of the univariate convergence diagnostics by
Brooks and Gelman (1998), for which the corresponding graphs are available on request. Graphs plotting prior and posterior dis-
tributions, as well as the posterior modes are also available on request.
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5 Forecasting performance

5.1 Rival forecasting models

As noted by Smets and Wouters (2007) or Rubaszek and Skrzypczyński (2008), unconstrained VARs that are

estimated using ordinary least squares or pure maximum likelihood are often overparameterized and may there-

fore perform poorly in forecasting. This finding and a similar estimation methodology makes Bayesian VARs

(BVARs) natural atheoretical benchmarks to DSGE models. Indoing so, we employ the Sims (2003) variant

of the so-called Minnesota or Litterman prior for BVAR estimation and forecasting, which is incorporated in

DYNARE. The Minnesota prior is an informative prior developed by and specified in Doanet al. (1984) on

an otherwise unconstrained VAR with intercept, which imposes restrictions on the longer lags of a VAR rather

than eliminating them (see, e.g., Gupta and Kabundi , 2011, for more details).

We follow Smets and Wouters (2007) concerning the calibration of the various prior parameters: the decay

parameter is set to 1.0 (so-called linear decay), the overall tightness to 10 (representing a comparatively loose

prior on own lags), the parameter determining the weight on the sum of coefficients or own-persistence to 2.0,

and the parameter determining the weight on the co-persistence is set to 5.0. For the purpose of out-of-sample

forecasting, we draw 10,000 random samples from the posterior distribution.

Table 2 presents the posterior predictive ability of candidate rival forecasting models in terms of the models’

log data density, which is obtained from the modified harmonic mean estimator as in Geweke (1999) in case

of DSGE models. As can be seen,DSGE-DIVattains a higher value thanDSGE-SAME. Moreover, we will

employBVAR(1)andBVAR(2)as atheoretical time-series benchmarks since log data density decays as the lag

order increases beyond 2.11

Calculating Bayes factors as in An and Schorfheide (2007) toassess the ex-ante posterior predictive ability

of DSGE-DIVand the three remaining rival modelsDSGE-SAME, BVAR(1)andBVAR(2), we conclude that

DSGE-DIVis expected to slightly outperformDSGE-SAME(Bayes factor ofe16), thus corroborating our idea

of a model with diverging interest-rate rules being able to better capture the real behavior of the ECB and the

Fed. However, both BVAR benchmarks are expected, based on Jeffreys (1961, p. 432), to (almost)decisively

outperform bothDSGE-DIVandDSGE-SAME(see Robertet al. , 2009). This may illustrate the flexible nature

of the BVAR structure being able to capture turning points inthe business cycle, e.g., the onset of the financial

crisis, more easily than the more rigid DSGE structure with its time-constant parameters.

[Table 2 about here.]

After employing Bayesian model comparison to determine thefour final rival forecasting models, we evaluate

their ex-post pseudo-out-of-sample forecasting performance by conventional measures of forecasting accuracy

based on dynamic forecasts of the nine endogenous variablesin terms of the predictive mean for forecast

horizonsh = 1, ..., 4 while using expanding windows. This means that each model is re-estimated on a quarterly

basis, while starting from the sub-sample 1996Q2–2006Q1 (40 observations) and expanding the estimation

11This deterioration continues forBVAR(5)andBVAR(6), which are not shown here. Using CPI instead of PPI inflation rates in the
interest-rate rules would result in a deterioration of posterior predictive ability, which corroborates the importance of using PPI inflation
rates in a two-country DSGE framework that features producer currency pricing.
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window up to sub-samples 1996Q2–2011Q1 (60 observations for h = 1), 1996Q2–2010Q3 (59 observations

for h = 2), 1996Q2–2010Q3 (58 observations forh = 3), and 1996Q2–2010Q2 (57 observations forh = 4),

respectively. Altogether, this deliversT1 = 21 (for h = 1), T2 = 20 (for h = 2), T3 = 19 (for h = 3), and

T4 = 18 (for h = 4) counterfactual observations. Due to the computational burden associated with full-fledged

Metropolis-Hastings iterations, we pursue the quarterly re-estimation of the two DSGE models with one Monte

Carlo Markov Chain consisting of 125,000 draws only, where 20% are discarded as burn-in draws.

Using the expanding windows (or recursive) forecasting technique also corresponds to a “natural” practitioner’s

situation, where all information available up to the forecast origin is used for forecasting. Thus, we implicitly

allow for the financial crisis from the second half of 2007 onward as the sub-samples for the first estimations as-

sociated with the forecasting evaluation exercise alreadyend prior to 2007Q3. Subsequent estimation windows,

however, include the crisis period.

5.2 Measures of forecasting accuracy

As measures of forecasting accuracy we employ the traditional root mean squared error (RMSE, see Table 3)

and mean absolute error (MAE, see Table 4), whereby the latter is more sensitive to small deviations from

zero, but less sensitive to large deviations since it is not computed based on squared losses (see Chatfield ,

2001, p. 150). In general, a better forecasting accuracy of the DSGE models relative to the BVAR models

would justify the constraints in the DSGE model as imposed byeconomic theory relative to the unconstrained

BVAR specification (see Rubaszek and Skrzypczyński , 2008). Similar reasoning holds when we compare the

performance of the less restrictedDSGE-DIVwith the performance ofDSGE-SAME.

In Tables 3 and 4, cells that are shaded in gray denote the smallest errors among DSGE models, while values

in boldface denote the smallest overall errors among rival forecasting models. In general terms, Euro area and

U.S. PPI inflation, as well as the terms of trade are more difficult to predict across models and forecast horizons,

which underlines the volatile nature of producer prices andnominal exchange rates. At forecast horizonh = 1,

DSGE-DIVdelivers more accurate results across variables in terms ofboth RMSE and MAE for all variables

among DSGE models. When we increase the forecast horizon toh = 2, ..., 4, DSGE-SAMEis gaining ground

at the expense ofDSGE-DIV, especially when predicting the output gaps, Euro area CPI and PPI inflation, as

well as the short-run U.S. nominal interest rate. However, altogetherDSGE-DIVproduces smaller forecasting

errors thanDSGE-SAMEin 24 (RMSE) and 25 (MAE) out of 36 cases each, respectively.

BVAR(2), in turn, often delivers the most accurate forecasts in terms of RMSE (14 cases) and MAE (18 cases)

among all rival models, followed byBVAR(1)(RMSE: 10 cases, MAE: 12 cases), thereby corroborating the

comparably good forecasting performance of Bayesian vector-autoregressions in the forecasting literature.

Nonetheless, the DSGE models often deliver the smallest overall RMSE for Euro area and U.S. PPI inflation,

U.S. CPI inflation, and the terms of trade. Among these,DSGE-DIV(10 cases) is characterized by the smallest

overall RMSE for U.S. PPI inflation (forh = 1, 2, 3, 4), the terms of trade (forh = 1, 2, 4), U.S. CPI inflation

(for h = 1, 2), and Euro area PPI inflation (forh = 2) and lies therefore in level withBVAR(1). DSGE-SAME,

however, is only able to produce the smallest overall RMSE in2 cases: Euro area PPI inflation (forh = 3) and

the terms of trade (forh = 3). Pertaining to the MAE, the DSGE models (6 cases,DSGE-DIVonly) are only
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able to deliver the overall smallest values for a narrower range of variables and a smaller number of forecast

horizons: Euro area (forh = 3) and U.S. (forh = 2) CPI inflation, and the terms of trade (forh = 1, 2, 3, 4). In

18 casesBVAR(2)is the most accurate model, in 12 casesBVAR(1).

One puzzling result of this forecasting evaluation exercise remains to be addressed, namely the ostensible

contradiction that the DSGE models perform so wellin practice(see Tables 3 and 4) despite being characterized

ex ante by a relatively mediocre posterior predictive ability (see Table 2). The solution to this puzzle is the

quarterly re-estimation of the models, which makes their free parameters quasi time-variant. Consequently,

both DSGE specifications are gaining ground in terms of flexibility towards capturing turning points in the

business cycle, e.g., the onset of the financial crisis (see Giraitis et al. , 2014, for an overview).

[Table 3 about here.]

[Table 4 about here.]

Finally, since the traditional measures of forecasting accuracy such as RMSE or MAE do not indicate whether

a particular model such asDSGE-DIV significantlyoutperforms or underperforms its competitors, we have to

consult the Harvey-Leybourne-Newbold (HLN) statistic on equal predictive accuracy developed by Harveyet al.

(1997), which corrects the original Diebold-Mariano statistic on equal predictive accuracy (see Diebold and Mariano ,

1995) for small samples. The test statistic is t-distributed with T − 1 degrees of freedom under the null hypoth-

esis hypothesis of equal forecasting accuracy of two rival models.

In line with Rubaszek and Skrzypczyński (2008), the long-run variance in the denominator of the HLN test

statistic is estimated in line with the Newey and West (1987)procedure using a modified Bartlett kernel, where

the truncation lag is dependent on the number of observations, as proposed by Newey and West (1994). For

calculating the HLN test statistic, we use squared loss differentials between two rival models in the numerator.

A negative sign of the values in Table 5 indicates a smaller loss differential ofDSGE-DIV, a positive sign a

smaller loss differential of the respective rival model. (∗∗) denotes significance of the HLN statistic at the 5%,

(∗) at the 10% level.

As noted by Wang (2009), in the presence of nested models (such asDSGE-DIVandDSGE-SAME) the HLN

statistic has a non-standard asymptotic distribution and tests for equal predictive forecasting accuracy tuned

to nested models such as the one suggested by Clark and McCracken (2001) should be preferred in principle.

However, Wang (2009) also refers to Giacomini and White (2006) who derive that Diebold-Mariano type

test statistics are still asymptotically standard-normally distributed for nested models when rolling estimation

windows are employed (Theorem 4). The same authors note thatthis reasoning also holds for expanding

estimation windows (see Giacomini and White , 2006) so that the HLN statistic on equal predictive accuracy

can still be employed for the present choice of rival forecasting models.

[Table 5 about here.]

As we can infer from Table 5, the null hypothesis of equal forecast accuracy cannot be rejected at the 1%

significance level in any case. However, we see some rejection of the null hypothesis of equal forecast ac-

curacy at the 5% and 10% significance levels, especially for shorter forecast horizons. With only 13 out of

108 total cases, the number of cases with significant differences of forecasting accuracy between rival models
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is comparably low. AlthoughDSGE-DIV is characterized by smaller RMSE and MAE values compared to

DSGE-SAMEacross variables and (almost all) forecast horizons, this outperformance is – apart from one case

(U.S. PPI inflation forh = 2) – not statistically significant. As indicated by many overall lowest RMSE and

MAE values, the BVAR benchmarks (10 cases altogether) are jointly characterized by a significantly better

forecasting performance thanDSGE-DIV for the Euro area (forh = 4) and the U.S. output gaps (forh = 1),

Euro area CPI inflation (forh = 2), and the U.S. short-run nominal interest rate (forh = 1, 2). Nonetheless,

DSGE-DIVretains its good forecasting accuracy for the terms of tradeas observed from the RMSE and MAE

given in Tables 3 and 4 also in terms of the HLN statistic forh = 2, 3 relative toBVAR(1). Altogether, the null

hypothesis of equal forecast accuracy can seldom be rejected for forecast horizonsh = 3, 4.

The reason why the four rival forecasting models can only rarely outperform one anothersignificantly, most

likely, is the use of the expanding windows forecasting technique: based on Monte Carlo simulations, Pesaran and Pick

(2011) find that averaging forecasts over different estimation windows almost always leads to a lower RMSE

relative to forecasts that are based on rolling estimation windows, even in the presence of structural breaks. The

authors confirm this general result by an application to financial data.

6 Conclusion

The main findings of this article can be summarized as follows. In terms of the RMSE and the MAE, the

DSGE model with diverging interest-rate rules outperformsthe DSGE model with identical interest-rate rules

in almost 70% of all cases for almost all variables across forecast horizons, whereby the improvements in

forecasting accuracy are most prominent for one-quarter-ahead predictions. It also compares well with the two

BVAR benchmarks of lag order 1 and 2, especially for U.S. producer- and consumer-price inflation, and the

terms of trade, as for the latter it attains the overall smallest RMSE and MAE for (almost) all horizons.

To a certain extent this improvement relative to ex-ante predictive ability is due to the quarterly re-estimation of

the DSGE models, which makes their free parameters quasi time-variant and, hence, the model structure itself

overall more flexible towards capturing turning points in the business cycle, e.g. the onset of the financial crisis.

However, for forecast horizons one and two we mostly find significantly better forecasting accuracy in terms

of HLN statistics for the benefit of Bayesian benchmarks only. For forecast horizons three and four, the null

hypothesis of equal forecasting accuracy can seldom be rejected across models. The reason why the four rival

forecasting models can only rarely outperform one anothersignificantly, most likely, is the use of the expanding

windows forecasting technique.

The overall picture of our analysis is that allowing for diverging interest-rate rules in DSGE forecasting is

worthwhile for the following reasons. First, the DSGE modelwith diverging interest-rate rules attains lower

RMSE and MAE values across variables and forecast horizons compared to the DSGE model with identical

interest-rate rules, thus corroborating the importance ofthe differences in the mandates of the ECB and the Fed.

Second, the model also compares well with the BVAR benchmarks, especially for U.S. producer- and consumer-

price inflation, and the terms of trade. This is worth emphasizing since BVAR benchmarks frequently forecast

better than DSGE models as can often be seen in the literature. Third, to the best of our knowledge, we are

among the first to address the issue of diverging interest-rate rules within a two-country DSGE framework of
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the Euro area and U.S. economies, which is one of the key contributions of this paper.
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Table 1: Prior and posterior distributions of the structural parameters ofDSGE-DIV.

Parameter Prior distribution Posterior distribution

PDF Mean Std. Dev. Mode Std. Dev. Mean 90% Conf. Int.

ρ Normal 1.5 0.37 2.0317 0.2333 2.0258 1.6138 2.4309
ξ Normal 2.0 0.75 2.9385 0.6699 2.9789 1.8700 4.0339
δ Beta 0.75 0.1 0.4171 0.0399 0.4085 0.3425 0.4760
δ∗ Beta 0.75 0.1 0.3828 0.0374 0.3764 0.3156 0.4397
α Gamma 1.5 0.25 1.8570 0.2234 1.9011 1.5216 2.2713
α∗ Gamma 1.5 0.25 1.6891 0.2324 1.7714 1.3772 2.1661
ι∗ Gamma 0.5 0.2 0.0607 0.0270 0.0775 0.0264 0.1240
ω Beta 0.75 0.1 0.8685 0.0677 0.8493 0.7500 0.9567
ω∗ Beta 0.75 0.1 0.8772 0.0635 0.8594 0.7630 0.9576

ζa Beta 0.5 0.2 0.9772 0.0082 0.9767 0.9643 0.9906
ζ∗a Beta 0.5 0.2 0.9685 0.0109 0.9669 0.9495 0.9895
ζu Beta 0.5 0.2 0.9931 0.0046 0.9889 0.9795 0.9983
ζ∗u Beta 0.5 0.2 0.9900 0.0068 0.9845 0.9718 0.9975
ζe Beta 0.5 0.2 0.0174 0.0106 0.0200 0.0038 0.0350
ζ∗e Beta 0.5 0.2 0.0260 0.0145 0.0306 0.0069 0.0523
ζv Beta 0.5 0.2 0.2890 0.0350 0.2831 0.2255 0.3435
ζ∗v Beta 0.5 0.2 0.2187 0.0290 0.2160 0.1671 0.2650
ζd Beta 0.5 0.2 0.0195 0.0126 0.0237 0.0039 0.0414

σηa Inv. Gamma 0.1 +∞ 0.0347 0.0117 0.0411 0.0199 0.0624
ση∗a

Inv. Gamma 0.1 +∞ 0.0360 0.0114 0.0435 0.0194 0.0701
σηu Inv. Gamma 0.1 +∞ 0.0235 0.0044 0.0256 0.0172 0.0335
ση∗u

Inv. Gamma 0.1 +∞ 0.0308 0.0057 0.0331 0.0227 0.0427
σηe Inv. Gamma 0.1 +∞ 0.0231 0.0020 0.0235 0.0200 0.0270
ση∗e

Inv. Gamma 0.1 +∞ 0.0257 0.0023 0.0262 0.0224 0.0301
σηv Inv. Gamma 0.1 +∞ 0.0195 0.0025 0.0204 0.0161 0.0246
ση∗v

Inv. Gamma 0.1 +∞ 0.0301 0.0046 0.0322 0.0241 0.0402
σηd Inv. Gamma 0.1 +∞ 0.0442 0.0039 0.0450 0.0384 0.0513

Note: The calibration primarily follows Smets and Wouters (2007). Posterior results are obtained
from estimating over the full sample (1996Q2–2011Q2). We employ MATLAB’s fmincon optimiza-
tion routine to retrieve the posterior modes.
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Table 2: Posterior predictive ability of
candidate rival forecasting models (log
marginal data density).

DSGE-DIV 1,737 BVAR(1) 1,835
DSGE-SAME 1,721 BVAR(2) 1,842

BVAR(3) 1,819
BVAR(4) 1,817

Note: The log data densities of candidate ri-
val forecasting models that are not ultimately
used are given in gray.
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Table 3: Root mean squared errors of rival forecasting models.

Horizon Model x x∗ πH π∗F π π∗ î î∗ ∆s

h = 1 DSGE-DIV 0.00949 0.01060 0.01379 0.02517 0.01060 0.01085 0.00231 0.00344 0.03617
DSGE-SAME 0.00974 0.01133 0.01464 0.02582 0.01136 0.012490.00313 0.00373 0.04083
BVAR(1) 0.00766 0.00746 0.01335 0.02701 0.01030 0.01176 0.00106 0.00133 0.04370
BVAR(2) 0.00671 0.00713 0.01209 0.02629 0.00879 0.01174 0.00100 0.00135 0.04304

h = 2 DSGE-DIV 0.01545 0.01549 0.01590 0.03053 0.01035 0.01210 0.00370 0.00539 0.03975
DSGE-SAME 0.01444 0.01528 0.01638 0.03180 0.01099 0.01403 0.00507 0.00543 0.04270
BVAR(1) 0.01321 0.01244 0.01657 0.03389 0.00555 0.01414 0.00225 0.00254 0.06461
BVAR(2) 0.01294 0.01288 0.01592 0.03215 0.00582 0.013000.00224 0.00278 0.05358

h = 3 DSGE-DIV 0.01994 0.01826 0.016150.02996 0.01042 0.01335 0.00470 0.00646 0.04419
DSGE-SAME 0.01831 0.01776 0.01599 0.03013 0.01019 0.01380 0.00594 0.00604 0.04286
BVAR(1) 0.01725 0.01525 0.01655 0.03378 0.01022 0.01277 0.003350.00341 0.07129
BVAR(2) 0.01719 0.01615 0.01646 0.03157 0.00951 0.01135 0.00332 0.00378 0.05589

h = 4 DSGE-DIV 0.02407 0.02068 0.016670.02910 0.00984 0.01226 0.00544 0.00722 0.04391
DSGE-SAME 0.02178 0.02001 0.01635 0.02936 0.00994 0.01371 0.006540.00646 0.04503
BVAR(1) 0.02018 0.01628 0.01574 0.03073 0.00653 0.01139 0.00414 0.00394 0.06392
BVAR(2) 0.01988 0.01727 0.01677 0.02946 0.006730.01052 0.00401 0.00432 0.05280

Note: Cells that are shaded in gray denote the smallest RMSE among DSGE models, while values in boldface denote the smallest
RMSE among all rival forecasting models.
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Table 4: Mean absolute errors of rival forecasting models.

Horizon Model x x∗ πH π∗F π π∗ î î∗ ∆s

h = 1 DSGE-DIV 0.00651 0.00817 0.01073 0.01861 0.00882 0.00827 0.00151 0.00263 0.02860
DSGE-SAME 0.00749 0.00878 0.01104 0.01879 0.00965 0.009850,00246 0,00269 0.03289
BVAR(1) 0.00510 0.00550 0.00923 0.01796 0.009420.00823 0.00068 0.00106 0.03280
BVAR(2) 0.00427 0.00518 0.00815 0.01750 0.008050.00870 0.00069 0.00103 0.03236

h = 2 DSGE-DIV 0.01156 0.01254 0.01246 0.02210 0.00920 0.00874 0.00263 0.00408 0.03042
DSGE-SAME 0.01204 0.01178 0.01273 0.02405 0.00951 0.01107 0.003850.00381 0.03243
BVAR(1) 0.00970 0.00938 0.01077 0.02116 0.00413 0.00988 0.00145 0.00215 0.04752
BVAR(2) 0.00859 0.00924 0.01111 0.02112 0.00451 0.00876 0.00139 0.00220 0.04036

h = 3 DSGE-DIV 0.01649 0.01514 0.01311 0.02446 0.00817 0.01053 0.00341 0.00482 0.03367
DSGE-SAME 0.01539 0.01408 0.01313 0.02445 0.00849 0.01098 0.004720.00442 0.03532
BVAR(1) 0.01336 0.01187 0.01113 0.02236 0.00912 0.00887 0.002130.00270 0.05334
BVAR(2) 0.01258 0.01203 0.01121 0.02158 0.00835 0.00820 0.00206 0.00288 0.04046

h = 4 DSGE-DIV 0.02039 0.01757 0.013480.02283 0.00828 0.00992 0.00424 0.00556 0.03519
DSGE-SAME 0.01755 0.01561 0.01331 0.02344 0.00774 0.01069 0.00557 0.00530 0.03610
BVAR(1) 0.01607 0.01359 0.01117 0.02196 0.00515 0.00824 0.00278 0.00325 0.04646
BVAR(2) 0.01559 0.01402 0.01244 0.02178 0.00553 0.00726 0.00270 0.00341 0.03655

Note: Cells that are shaded in gray denote the smallest MAE among DSGE models, while values in boldface denote the smallest
MAE among all rival forecasting models.
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Table 5: Harvey-Leybourne-Newbold (HLN) statistics of rival forecasting models relative toDSGE-DIV.

Horizon DSGE-DIV vs. x x∗ πH π∗F π π∗ î î∗ ∆s

h = 1 DSGE-SAME −0.2669 −0.6928 −1.1362 −0.8909 −0.4791 −1.7086 −1.1429 −0.3384 −1.0695
BVAR(1) 1.4479 2.0624∗ 0.3779 −0.5667 0.1772 −0.7233 1.5376 2.0938∗∗ −0.9528
BVAR(2) 1.4150 1.8366∗ 1.2707 −0.4090 1.0715 −0.7647 1.5249 2.1322∗∗ −0.9191

h = 2 DSGE-SAME 0.4734 0.1755 −1.2375 −2.2650∗∗ −0.5958 −1.2147 −1.1428 −0.0334 −0.6118
BVAR(1) 1.3259 1.7504∗ −0.2800 −0.7618 2.1446∗∗ −1.0276 1.5369 1.9011∗ −1.7749∗

BVAR(2) 1.4989 1.4632 −0.0121 −0.4844 2.1322∗∗ −0.7272 1.4742 1.8670∗ −1.4997

h = 3 DSGE-SAME 0.7589 0.2995 0.5172 −0.3984 0.1758 −0.1439 −1.1062 0.3030 0.3273
BVAR(1) 1.3780 1.3127 −0.1465 −0.6837 0.0971 0.4841 1.3864 1.6416 −1.7887∗

BVAR(2) 1.8332 1.0330 −0.1222 −0.4511 0.4154 1.0396 1.3666 1.5369 −1.4481

h = 4 DSGE-SAME 1.1263 0.2433 0.8643 −0.5496 −0.0652 −0.5429 −1.0420 0.5392 −0.3609
BVAR(1) 1.6329 1.1545 0.4561 −0.3652 1.2323 0.6235 1.3020 1.4240 −1.3564
BVAR(2) 1.8741∗ 1.0899 −0.0492 −0.1224 1.1698 1.2638 1.4164 1.3905 −1.0125

Note: A negative sign of an HLN value indicates a smaller squared loss differential ofDSGE-DIV, a positive sign a smaller loss
differential of the respective rival model. (∗∗) denotes significance of the HLN statistic at the 5%, (∗) at the 10% level.
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Figure 1: Historical realizations of variables.
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